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Gradient Methods in the Solution of 
Systems of Linear Equations' 

Marvin L. Stein 

The results of various experiments with i terative methods for solving systems of linear 
algebraic equations are discussed. Modifications of the op t imum gradient method are com
pared, and the ra ther interesting self-acceleration properties of a class of methods here named 
"almost o p t i m u m " gradient methods are pointed out . 

1. Introduction 

The method of steepest descent, or the optimum 
gradient method, has been known to mathematicians 
since the time of Cauchy [l].2 Others who have dis
cussed this method include Curry 12], Forsythe and 
Motzkin [3], Householder [4], Kantorovitch [5], and 
Temple [6]. Its infrequent application in compu
tational work is no doubt due to the slowness with 
which it converges. This slowness of convergence 
is unfortunately generally true of gradient methods. 
However, with the advent of large-scale computing 

Sachinery it has become feasible to seriously consider 
em in practical numerical analysis. 
In a forthcoming paper, Hestenes and Stein [7] 

discuss a large class of gradient procedures for solving 
systems of linear equations. These procedures con
tain the optimum gradient method as a special case. 
The present note is mainly a report on some numer
ical experiments with them that were carried out on 
the IBM Card-Programmed Electronic Calculator at 
the Institute for Numerical Analysis of the National 
Bureau of Standards. Some attention is also given I 
to an experiment in which the problem of solving a 
system of linear equations was changed to an equiv
alent eigenvalue problem and then solved by a mod
ification of one of the gradient methods discussed by 
Hestenes and Karush [8]. The most striking result 
of the experiments indicates that there is a large class 
of gradient methods that is self-accelerating, that is, 
which irregularly shows a large increase in the rate of 
convergence without the introduction of any modi
fication in the computational routine. This be
havior is in sharp contrast to that of the method of 
steepest descent, which in the light of the present 
results can no longer be considered as optimum from 
an over-all point of view unless modified by some 
special accelerating routine [9j. 

2. Summary of the Theory 

Let A denote an m-rowed and n-columned matrix, 
and let b and x be m-rowed and n-rowed column I 
vectors, respectively. The vector r{x) = b—Ax is i 
then an m-rowed column vector. In the following 
a star (*) affixed to the symbol for any vector or 
matrix will indicate its conjugate transpose. Hence, 

1 The preparation of this paper was sponsored (in part) by the Office of Naval 
Kesearch. 

2 Figures in brackets indicate the literature references at the end of this paper. 

if H is a positive m X ^ Hermitian matrix, we have 
H*=H, r* i? r>0 , provided r ^ O . Clearly, the 
nonnegative real-valued function 

J(x)=r*Hr (1) 

vanishes if and only if 

Ax=b. (2) 

Therefore, the problem of minimizing (1) is equiva
lent to the problem of solving the system (2), pro
vided a solution exists. If no solution exists, a 
vector x which minimizes f(x) yields a best fit of 
b by Ax in a least-squares sense with the metric 
determined by H. 

Hestenes and Stein [7] have analyzed the following 
algorithm for constructing the minimum of (1). 
Consider iterations ot the type 

xi+l=xi+ai^i (J = 0 , l ,2 , - . . . ) , (3) 

where XQ IS chosen initially and where, after xt has 
been determined, the gradient vector & is defined by 
the rule %i=A*Hr(xi). Tf £i = 0, the problem is 
solved. If & 5^0, tbe scalar at is taken to be of the 
form ai = 6iyi, where 

7i gA*HAti 

and ft is any complex number. The sequence (3) 
has been shown to converge to the minimum of 
j(x) provided the coefficients ft satisfy the conditions 

i-+i>i+5, |ft|>5, 
Pi pi 

where 5 is arbitrary on the range 0 < 5 < 1 . 
Setting ft = 1 gives the optimum gradient method, 

which has the following geometrical interpretation. 
Starting at a?0? one proceeds along the normal to that 
member of the family of concentric ellipsoids 

j(x) = constant, (4) 

which passes through x0 until a point tangent to 
another ellipsoid of the family is reached. One then 
goes along the normal to this second ellipsoid until 
one is again at a point of tangency to a member of (4), 
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and so on until the common center is reached. Clear
ly, it would be highly desirable to land on an axis 
of the family. However, as simple two-dimensional 
examples illustrate, one usually overshoots the major 
axis bv proceeding all the way to a point of tangency. 
Hence, it was conjectured by M. R. Hestenes that 
of the allowed values of fa some of those chosen 
from the range & < 1 would yield better convergence 
than fa = l. This conjecture is the motivation for 
the experimental work whose results will be tabulated 
and discussed below. 

3. Experimental Data 

The algorithm described in the preceding section 
was carried out for the problem Ax=b with 

(5) 

f .06667 

. 02634 

-.04640 

-.07368 

-.02131 

k.-. 00431 

.02634 

.26841 

-. 02243 

. 15952 

-.05923 

-.12797 

-.04640 

-. 02243 

.10932 

.05150 

-.04100 

. 08558 

-.07368 

.15952 

. 05150 

. 25152 

-. 01141 

-. 07169 

-.02131 

-. 05923 

-.04100 

-.01141 

. 14403 

. 01105 

-. 00431^V 

-.12797 

.08558 

-.07169 

.01105 

.19450J 

and 
r-

-
1 -

^~ 

.008609^\ 

.014279 

.000243 

.004576 

.008043 

.004895J 

(6) 

Runs were made with fixed values of fa ranging be
tween fa = .l and £j=1.9. Since the matrix A and 

the vector b were obtained from an original matrix 
B and vector c as 

A=B*B, b=B* (7) 

A is positive and symmetric. Hence, a convenient 
metric is 

H=A-K (8) 

In the metric (8) the gradient becomes ^i=r(xt). 
Thus the other significant quantities defined in sec
tion 2 assume the form 

7z = 
r*(xl)r(xl) 

~r*(xl)Ar(xl) 

f(xi) = c*c — (x*b + b*xi)
Jrx*Axi 

=c*c — x*(b+r(Xi)). 

Table 1 lists runs of j{xt) and /(»<)//(»*-0 for 
various fixed values of fa. In each case the initial 
x=xQ was zero. The values of f(xt) are given here 
to the same number of places as in the original 
calculation, while the ratios /(#*)//(#*-i) have been 
cut down from a six-place table. Table 2 gives the 
values of at corresponding to the runs listed in table 
1. These numbers were originally computed to 10 
places. The results listed in tables 1 and 2 are base* 
for the most part on single runs of the Card-Program
med Calculator. The main check used in the ma
chine computations was the mono tonicity of j(x). 
However, the run j8 t=.9 has been exactly duplicated 
on two separate occasions The results of the run 
Pt=l check closely with results obtained by A. I. 
Forsythe in an entirely independent manner. 
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T A B L E 1 

l\ 
i \ 

0 
1 
2 
3 
4 
5 

6 
7 
8 
9 
10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

0 
1 
2 
3 
4 
5 

6 
7 
8 
9 
10 

11 
12 
13 
14 
15 

16 
17 
18 
19 

1 20 

/w f(xd 

0.1 

333840 
293093 
257410 
226497 
199981 
177424 

158324 
142190 
128561 
117033 
107265 

98962 
91885 
85836 
80647 
76184 

72336 
68999 
66094 
63546 
61295 

59273 
57423 
55677 
53951 
52120 

49948 
46891 
42130 
36978 
31700 

0. 

333840 
124168 
91763 
71835 
64192 
57521 

54774 
49772 
47378 
27275 
25034 

23465 
22561 
21653 
21039 
20108 

19456 
16602 
14946 
14384 
13963 

0. 8779 
.8782 
.8799 
.8829 
.8872 

.8923 

.8981 

.9041 

.9103 

.9165 

. 9226 

.9285 

.9342 

.9395 

.9447 

.9495 

.9539 

.9579 

.9614 

.9646 

.9670 

. 9688 

.9696 

.9690 

.9661 

.9583 

.9388 

.8985 

.8777 

.8573 

85 

0. 3719 
.7390 
.7828 
.8936 
.8961 

.9522 

. 9087 

.9519 

.5757 

. 9178 

.9373 

.9615 

.9597 

.9716 

.9557 

.9676 

.8533 

. 9002 

.9624 

.9707 

Kxd * fiXi) 
f(Xi-l) 

0.3 

333840 
224451 
152582 
111480 
87335 
72579 

63339 
57304 
52467 
44607 
39040 

38532 
36121 
35705 
34881 
34138 

33281 
32693 
31085 
30737 
29969 

29460 
27849 
27540 
27027 
26105 

25789 
21529 
21171 
20929 
20649 

0 

333840 
121487 
89569 
70668 
63092 
57047 

54256 
50251 
47793 
38645 
33695 

31606 
30107 
27239 
25370 
24619 

24072 
23518 
23014 
22453 
21954 

0. 6723 
.6798 
. 7306 1 
. 7834 
. 8310 

. 8727 

. 9047 1 

. 9156 

. 8502 

. 8752 

. 9870 

. 9374 

. 9885 

. 9769 

. 9787 

. 9749 

. 9823 

. 9508 

. 9888 1 

. 9750 

. 9830 

. 9453 

. 9889 

. 9814 

. 9659 

. 9879 

. 8348 

. 9834 

. 9886 

. 9866 

.9 

0. 3639 
. 7373 
. 7890 
. 8928 
. 9042 

.9511 

. 9262 

.9511 

. 8086 

. 8719 

.9380 

.9526 

.9047 

.9314 

.9704 

.9778 

. 9770 

.9786 

.9756 

.9778 

fM 
f(Xi-l) 

0.6 

333840 
153663 
98661 
77941 
67416 
61492 

57677 
55073 
52979 
51324 
49694 

48416 
46747 
45718 
41494 
40042 

39063 
38192 
37193 
36444 
35033 

34325 
18343 
16437 
16011 
15288 

14955 
13055 
12441 
12216 
11111 

0 

333840 
119877 
87412 
70104 
62460 
57261 

54401 
51556 
49435 
46729 
44495 

40884 
38017 
28607 
22911 
20890 

19416 
18906 
18497 
18089 
17701 

0. 4603 
.6421 
.7900 
.8650 
. 9121 

. 9379 

. 9548 

. 9620 

. 9688 

. 9682 

. 9743 

. 9655 

.9780 

. 9076 

. 9650 

. 9755 

. 9777 

. 9738 

. 9799 

. 9613 

. 9798 

. 5344 

. 8961 

. 9741 

. 9548 

.9782 

.8729 

.9530 

.9819 

. 9095 

95 

0. 3591 
. 7292 
.8020 
.8910 
.9168 

.9500 

. 9477 

. 9589 

. 9453 

.9522 

.9188 

.9299 

.7525 

.8009 

.9118 

. 9294 

.9737 

. 9784 

.9779 

. 9785 

f(Xi) 
f(Xi) 

f{Xi-l) \ 

0.8 

333840 
127922 
93810 
73423 
65477 
58631 1 

55826 
51049 
49055 
23614 
22633 

19411 
18091 
16729 
16068 
14243 

13389 
13008 
12727 
12414 
12152 

11807 
11544 
10972 
10595 
3694 

2468 
2389 
1956 
1767 
1723 

0. 3832 
. 7333 
. 7827 
. 8918 
. 8954 

. 9521 

. 9144 

. 9609 

. 4814 

. 9584 

. 8576 

. 9320 

. 9247 

. 9605 

. 8864 

. 9400 

. 9715 

. 9784 

. 9754 

. 9789 

. 9716 

.9777 

. 9504 

. 9656 

. 3486 

. 6681 

. 9680 

. 8187 

. 9033 

. 9751 

1.0 

333840 
119341 
85444 
70047 
62360 
57853 

54959 
52692 
50807 
49095 
47519 

46036 
44634 
43304 
42036 
40825 

39667 
38557 
37489 
36462 
35473 

0. 3575 
. 7160 
. 8198 
. 8902 
. 9277 

. 9500 ! 

. 9587 l 

. 9642 

. 9663 

. 9679 

. 9688 

. 9695 

. 9702 | 

. 9707 

. 9712 

. 9716 

. 9720 

. 9723 

. 9726 

. 9729 1 
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T A B L E 2. 

\ 

1 
2 
3 
4 
5 

6 
7 
8 
9 
10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

0.1 

0. 553 
.595 
. 635 
. 670 
. 702 

.732 

. 762 

.792 

. 825 

. 862 

.902 

. 947 

. 996 
1. 052 
1. 113 

1. 182 
1. 260 
1.349 
1.454 
1. 581 

1. 742 
1. 958 
2. 264 
2.735 
3.534 

5.083 
8.606 
15. 945 
20. 844 
25. 971 

0.3 

1. 660 
2. 094 
2.377 
2.764 
3. 319 

4. 064 
5. 168 
7. 863 

22. 205 
21. 294 

1.519 
11. 598 
1. 198 
4.095 
3. 761 

4. 595 
2.977 
9. 809 
1.233 
4. 668 

2. 893 
11. 156 
1. 131 
3.300 
6.757 

1. 714 
35. 356 
0. 755 
0.993 
2. 110 

0.6 

3.320 
3. 576 
3. 491 
3. 585 
3.587 

3. 766 
3.714 
4. 012 
3.688 
4. 390 

3.336 
5.688 
2.492 
19. 081 
1.447 

4.218 
3. 611 
4.832 
2. 990 
8. 239 

1.919 
116.743 
1.259 
1.595 
9. 841 

1.759 
30. 924 
1. 344 
2.467 

22. 538 

0.8 

4.427 
2. 827 
4. 642 
2. 676 
6. 157 

2. 391 
12. 626 
2.027 

125. 896 
2. 248 

25. 889 
1. 825 

15. 493 
2.087 

27. 349 

3. 301 
4. 480 
3.474 
4.986 
3. 103 

6.463 
2.567 
13. 274 
1. 962 

198. 581 

1. 628 
2. 204 

42. 957 
1.695 
5. 189 

0.85 

4. 703 
2. 691 
5. 158 
2. 532 
7. 173 

2.315 
16. 049 
2.030 

108. 543 
3.025 

4.738 
2. 912 
6. 140 
2. 634 
9. 972 

2.206 
41. 576 
1.799 
9.919 
2.218 

41. 303 
1.799 

10. 109 
2.207 

44. 570 

1.793 
8. 887 
2. 314 

24. 873 
1.884 

0.9 

4. 980 
2. 602 
5. 543 
2.486 
7.484 

2.362 
13. 847 
2. 141 

50. 509 
1. 886 

17. 968 
2. 128 

29. 005 
2. 525 
5. 586 

3.407 
5.009 
3.207 
5. 628 
2.954 

6. 818 
2. 657 
9. 627 
2. 332 

20. 471 

2.015 
326. 505 
1. 817 
3. 018 
6. 291 

0.95 

5.257 
2. 558 
5. 657 
2. 525 
6. 865 

2. 508 
9. 251 
2.412 
12. 958 
2. 248 

22. 431 
2.085 
79. 571 
1. 958 

27. 906 

2. 685 
4. 786 
3. 565 
4. 596 
3.488 

4.747 
3. 398 
4. 942 
3.295 
5.200 

3. 179 
5. 550 
3.049 
6.03£ 
2. 907 

1.0 

5.533 
2. 551 
5.442 
2. 641 
5.781 

2.756 
6.267 
2. 829 
6.466 
2. 849 

6.513 
2.853 
6. 530 
2.856 
6. 542 

2.858 
6.550 
2. 859 
6.557 
2. 860 

6. 563 
2. 861 
6.568 
2. 862 
6. 571 

2. 863 
6.574 
2. 863 
6.576 
2. 864 

1.1 

6. 087 
2. 625 
4.437 
3. 057 
4. 217 

3.369 
4. 197 
3. 620 
4. 166 
3. 766 

4. 112 
3. 847 
4. 066 
3. 895 
4. 036 

3. 926 
4. 016 
3.947 
4. 005 
3.961 

3.998 
3. 970 
3. 994 
3.976 
3. 992 

3. 981 
3. 991 
3.984 
3.990 
3. 986 

1.3 

7. 193 
2. 983 
3. 242 
3. 514 
3. 635 

3. 740 
3. 822 
3. 883 
3. 921 
3.944 

3. 956 
3.963 
3.968 
3. 971 
3. 973 

3.975 
3.977 
3.978 
3.979 
3. 9R1 

3.982 
3.983 
3. 984 
3. 984 
3. 985 

3. 986 
3. 986 
3. 987 
3. 988 
3. 988 

1.6 

8. 853 
3. 751 
3.335 
3.335 
3.398 

3. 522 
3.684 
3.824 
3. 903 
3. 939 

3. £55 
3.963 
3.967 
3. 970 
3.973 

3.975 
3. 976 
3. 978 
3.979 
3. 980 

3. 981 
3. 982 
3.983 
3.984 
3.985 

'3.986 
3.986 
3. 987 
3.988 
3. 988 

' 1.9 

10. 513 
4. 613 
3. 844 
3. 827 
3. 826 

3. 827 
3. 829 
3. 832 
3. 834 
3. 837 

3. 841 
3. 845 
3. 849 
3. 855 
3. 860 

3. 866 
3. 873 
3. 880 
3. 887 
3. 895 

3. 903 
3.911 
3. 918 
3. 926 
3. 933 

3. 940 
3. 946 
3. 952 
3. 957 
3. 962 

4. Conversion to an Eigenvalue Problem 

By introducing the variable xn+h an equation 
Bx=c can be expressed in the homogeneous form 
Cy=0, where 

C=(B c), 
\xn + \/ 

Multiplying through by O* gives the system of order 
one higher Dy=0, where 

D=\ 

(B*B 

<c*B 

5*c> 

is a symmetric matrix whose least eigenvalue is zero. 
The nontrivial eigenvector corresponding to this 
zero eigenvalue yields a solution of the original 
system of linear equations. 

As is well known, the least eigenvector of the sym
metric matrix D can be found by minimizing the 
Rayleigh quotient 

/ N y*Dv 
y*y 

y5*0. 

Hestenes and Karush [8] have examined in detail 
the convergence of various methods for accomplish
ing the minimization of fx. The following algorithm 
for constructing a setjTOffce {yt} that minimizes /x is 
a modification of their "optimum a" procedure. 
We define the gradient as | i = f(yi)=Dyt—/j,(yt)yt. 
Let 

7 i = 
1 

M & ) 
M(€0^0, 

and let ai=ftyi, where /3 is a positive number less 
than or equal to one. Then, given yiy we determine 
yi+1 by the formula yi+1=yi—ai^i. 

This algorithm was actually carried out with the 
matrix 

A b 

D=\ 

where A is given by (5), b is given by (6) with all 
components multiplied by 10 and c*c = .333840. In 
view of (7) Dy=0 is actually a problem of the type 
just described. Runs were made with various val
ues of j8 ranging between .7 and 11- !For purposes 
of comparison, the same starting point (origin) as 
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in the computations recorded in section 3 was used 
and a record of 

Wn + ll 

was kept. In table 3 3 we present the results of the 
run 0 = .9. The runs for other values of 0 showed 
substantially the same unstable behavior, while that 
for /3 = 1 (optimum) showed a very stable behavior 
and as a result converged quite slowly. The num
bers f(xf) and «i, appearing in table 3, were orig
inally computed to 10 places. The ratios f(xt)/f(xt-.i) 
were computed from the original values of f(xt) and 
then cut down to the present size. 

T A B L E 3. 

i 

0 
1 
2 
3 
4 
5 

6 
7 
8 
9 
10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
| 22 
1 23 

24 
25 

26 
27 
28 
29 

• ' 3° 

31 
32 

f(*i) 

333840 
121482 
86700 
70323 
57533 
60698 

53564 
53869 
49788 
46902 
45704 

41266 
41045 
36337 
36011 
31318 

30291 
24919 
22095 
7468 
6963 

5985 
5541 
4642 
4206 
3171 

2644 
264 
151 
117 
91 

11 
8 

/fe)//te-i) 

6. 3639 
.7137 
. 8111 
.8181 

1. 0550 

0. 8825 
1. 0057 
0. 9242 
. 9420 
.9744 

.9029 

. 9947 
. .8853 
.9910 
.8697 

. 9672 

. 8226 

.8867 

.3380 

. 9324 

. 8595 

. 9258 

.8378 

.9060 

. 7540 

.8339 

. 0998 

. 5733 

.7708 

. 7806 

. 1274 

. 6933 

0.9T; 

6. 4980 
. 2575 
. 7076 
. 3951 
. 5478 

. 3968 

. 5494 

. 3479 

. 5237 

. 3046 

. 5577 

. 2761 

. 6639 

. 2482 

. 9109 

. 2189 
1. 7145 
0. 1909 
5. 9172 
0. 2758 

. 6081 

. 2493 

. 8282 

.2201 
1. 5481 

0. 1912 
6.6970 
0. 1766 
1.4380 
0. 1908 

6. 4755 
0. 1890 

5. Conclusion 

The error function j(x) goes monotQnically to zero 
in each of the gradient methods. Hence the number 
~Pn=100f(xn)/J(xo) tells us what percentage of the 
distance from the starting point to zero remains to 
be covered at the nth step. Table ,4 gives P30 for 
various values of /J*. We note 

3 The author thanks R. M. Hayes for furnishing him with most of the data 
appearing in table 3. 

T A B L E 4 . 

0 

P20 

0 

^30 

0. 1 

9.49 

0.95 

4.21 

0. 3 

6. 18 

1. 0 

8. 14 

0. 6 

3.33 

1. 1 

9.05 

0. 8 

0. 52 

1. 3 

9.07 

0. 85 

1.90 

1. 6 

9. 10 

0.9 i 

0.08 

1.9 

9. 97 

after 30 steps that, with the exception of the case 
Pi = P=.l, all the gradient methods for values 0 < 1 
are converging faster than the optimum method, 
while all the gradient methods for values 0 > 1 
are converging at a slightly slower rate than the 
optimum method. For the eigenvalue method we 
have P3 2=.002. The increased rate of convergence 
for this case is offset on the Card-Programmed 
Calculator by the greater length of time needed for 
each step. However, on a high-speed machine this 
factor would be negligible. An explanation of the 
speedier convergence of the eigenvalue procedure 
lies in the fact that the transformation of the prob
lem to the homogeneous form has shrunk the ratio 
of the largest and the smallest nonzero eigenvalues. 
This improvement of "condition" is something that 
one could not generally expect to occur [10]. 

The ratios j(Xi)/f(Xi-i) compare the rate of con
vergence at each step with that of a geometric 
progression having the same ratio. A study of these 
numbers and of the corrections at brings into sharp 
focus the contrast between the instability of the 
gradient methods employing 0 < 1 and the stability 
of those employing @> 1. In the method of steepest 
descent it is just this stability that permits accelera
tion. However, this acceleration must be achieved 
through a modification of the computational routine. 
On the other hand, the instability of the methods 
using 0<O leads to occasional accelerations without 
the introduction of any changes whatsoever in the 
computing routine. 

From the point of view of using the "almost 
optimum" gradient method on a large scale computer, 
its self-acceleration property has more than theoreti
cal interest. As is well known, the high-speed 
memory capacity of the computers now in existence 
is rather limited. Hence, the necessity of storing a 
special acceleration routine might prove to be a 
severe handicap indeed. 

I t is worth while to compare the values of at with 
the reciprocal eigenvalues of the matrices A and D. 
For A these reciprocal eigenvalues have been found 
to be approximately 2.0, 3.9, 5.7, 12.1, 63, and 372, 
while for D the finite reciprocal eigenvalues range 
between approximately 8.35 and 0.189.4 We will 
pay particular attention to the points at which 
acceleration took place. One sees that preceding 
an acceleration there was a "smoothing run" during 
which the « / s were in the range of the small recip
rocal eigenvalues. On the iteration immediately 
before an acceleration, at was almost equal to the 
smallest reciprocal eigenvalue, while on the iteration 

* These values were furnished by R. M. Hayes. 
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during which acceleration took place at was between 
the highest and next to highest reciprocal eigenvalues. 
I t was just this technique of choosing af that the 
present author helped develop in previous experi
ments with a "fixed a" gradient method, which were 
conducted under the direction of M. R. Hestenes. 
In this method the operator chooses the value of a 
just before each iteration, and by judicious choices 
he can successfully accelerate the method to a con
siderable extent. However, this requires too many 
judgments of the operator to be practical for a fast 
machine or an inexperienced operator. Hence, it is 
quite hopeful to note the existence of methods 
suitable for high-speed machines that can duplicate 
the fixed a acceleration procedures without any 
intervention by the operator once the process has 
started. 
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